Test Drive of the week: Smart Fortwo

The car is a small, compact two-seater. It is easy to get into and feels spacious inside.
The interior is not really basic; it feels slightly luxurious. The upholstery was a nice patterned grey colour and the dashboard and side doors were also shades of grey.

The dashboard is very clean and easy to read. The GPS seems quite sophisticated and is inlaid, like a TV set.

It starts up just like a normal car. There are only three speeds: neutral, drive and reverse–very simple. You don’t have to press very hard to accelerate. The car will go from 0 to 30mph in 6.5 seconds, and has an electronically limited top speed of 60 mph. Of course, there is no sound when driving since it is electric.

It drives easily and responsively. We drove on a test track with lots of winding roads and a traffic-free straight away and it was a peppy, but not really speedy, ride.

It has a lithium battery which is included in the cost price and should last 8 to 10 years. It also has ESP, ABS brakes two airbags and seat belt pre-tensioners, and also features a NCAP tested tridion safety cell. It is air-conditioned which is a nice, although not that necessary, plus. The 30kW electric motor is built by Zytek Automotive, a UK technology company.

As the first step of its electric drive program, smart has been running 100 demonstration vehicles in the United Kingdom since 2007. The series production of the smart fortwo electric drive has now started with 1,000 vehicles, which will be run in both Europe- starting by the end of 2009- and the United States- starting in the second half of 2010 in several cities. The series production in large numbers will start for model year 2012 vehicles, which can be bought in all smart centers.

The smart fortwo electric drive will be equipped with a 16.5 kWh lithium-ion battery powering a 30 kW motor positioned over the rear drive wheels. The battery can be charged with either 100V or 220V systems and will require between 3.5 and 8 hours of charging time, depending on the voltage used and the starting state of the battery charge. An 85 mile range is anticipated.

for more info click here

Advertisements

the new toy of the day: Electric Air Vehicle

 It’s an airplane concept conjured up by the mind of aerospace engineer Mark Moore. The unusual looking, vertical take-off and landing tailsitter is only an idea, but you’d never know that from the attention the Puffin has gotten on the Internet.

Moore came up with the design for the electric powered, 12-foot (3.7 m) long, 14.5-foot (4.4 m) wingspan personal air vehicle as part of the coursework for his doctoral degree. Then Langley’s creativity and innovation and revolutionary technical challenges funds paid for much of the research. How the Puffin rocketed from esoteric erudition to web sensation is a classic case study in the power of the viral nature of the web.

First it appeared on the Scientific American website from the original interview on electric aircraft propulsion. There Moore was quoted as saying the team named the design the Puffin because, “If you’ve ever seen a puffin on the ground, it looks very awkward, with wings too small to fly, and that’s exactly what our vehicle looks like,” Moore says. “But it’s also apparently called the most environmentally friendly bird, because it hides its poop. So the vehicle is environmentally friendly because it essentially has no emissions. Also, puffins tend to live in solitude, only ever coming together on land to mate, and ours is a one-person vehicle.”

The pictures and video of the Puffin helped attract media attention too. It’s not everyday that you see a design that’s part plane, part helicopter that stands upright on the ground. Its tail splits into four “legs” that serve as landing gear. It lifts off like a helicopter, hovers and then leans forward to fly horizontally with the pilot lying down like in a hang-glider.

Puffin would be a hybrid of helicopter and small aircraft. Like a helicopter it would stand upright on the ground. Its tail consists of 4 legs that act as landing gear. It lifts off like a helicopter. When it hovers and leans forward to fly horizontally it gives the appearance of a hang-glider. Next step of the NIA will be to fly a remote control one-third size model. This experiment will enable them to validate theorems made in academic studies, with the particular emphasis on exploring the transition from hover to forward flight.

I think this is amazing for all people who lives in big big cities!

                                                                   

for more info click here

Nissan Leaf 2010

Nissan finally showed off the first of several new electric vehicles this morning at the opening of its new global headquarters in Yokohama. Nissan chief Carlos Ghosn, a longtime skeptic on hybrids, is betting that the Leaf and other EVs, will quickly become mass market hits, and even suggested that fully electric models could account for 10% of all car sales by 2020.

Key to its success will be bringing down the cost of the batteries, which currently cost around $10,000 per car to make. Sensibly, Nissan plans to lease the batteries to customers rather than try to sell the car at an inflated price. Initially, the carmaker will share the burden by taking advantage of government subsidies and cheap loans to ensure sales are profitable from day one. The challenge will be to get costs down to a sufficient level by the time governments begin scaling back incentives. Mass production should help. Ghosn, once again emphasizing the importance of affordability, said that the cost of leasing the batteries, plus the electricity used to charge them, will be less than what customers spend on gasoline for regular cars.

The five-seat, electric-blue Leaf hatchback is to be launched in select U.S. and Japanese markets next year to begin what Nissan hopes will become an era of global leadership for the company in a growing EV market.

Leadership shouldn’t be evasive if the Leaf lives up to its performance billing. A top speed of 90 mph, a range of 100 miles per charge with a 30-minute recharge where quick-charging stations are available (6 hours with a 220-volt current) and seat cushion-compressing acceleration that will launch it from zero to 30 mph faster than an Infiniti G37, thanks to 207 pound-feet of torque from its 80 kilowatt (107 horsepower) electric motor are all part of the package.

Specifications

The Leaf uses a front-mounted electric motor driving the wheels, powered by a 24kW·h/90 kW lithium ion battery pack. The expected cruising range is the same as the EV-11 prototype, as is the motor.[5] The battery pack is made of air-cooled stacked modules.

Performance

Nissan claims that the car has a top speed of over 140 km/h (87 mph).

The battery can be charged with 480 Volt, 220 Volt and 110 Volt sources. With 480 Volts, it can be charged to 80% capacity in about 30 minutes with a special quick charger that sends 480 volt 125 amp direct current to the battery.With 220 Volt, it can be charged in 4 hours, and in North America and Japan using standard household 110 Volt outlets it can be charged in 16 hours.

Powered by a unique array of thin, laminated lithium ion cells capable of delivering over 90 kW of power, the Leaf’s front-mounted electric motor delivers 80 kW (107 horsepower) and a healthy 280 Nm of torque (208 pound-feet), and it promises brisk and silent off-the-line power, with acceleration from a stop comparable to that of the company’s Infiniti G35. And as Nakamura-san noted, the Leaf has a top speed of over 140 km/h (87 mph).

Perhaps more important than the Leaf’s top speed are its battery’s charging characteristics. In this regard, the car’s under-floor mounted assembly of 48 lithium ion modules (each laptop-sized module is comprised of four magazine-sized cells) offers a number of charging strategies. To yield a full charge, a 200-volt, single-phase AC charger takes less than eight hours, and topping off the battery from a 100 volt single-phase standard home wall outlet will take somewhere around twice that time, so prospective Leafmakers would do well to get 220 volt hookup like their clothes dryer uses out in their garage.

Connected Mobility

Nissan Leaf will employ an advanced IT system. Connected to a global data center, the system provides support, information, and entertainment for drivers 24 hours a day. The dash-mounted monitor displays the Leaf’s remaining power, in addition to showing a selection of nearby charging stations.

Users’ mobile phones can be used to turn on air-conditioning, the heater and re-set charging functions even when the vehicle is powered down. An on-board remote-controlled timer can also be pre-programmed to recharge batteries.

While Nissan promises to deliver the Leaf to its first American customers in late 2010, it isn’t immediately clear where it will be made available, to whom, and how. By that we mean the zero-emissions vehicle will likely be marketed in select stateside cities that have already committed to building some of the necessary infrastructure to support electric vehicles, and the Leaf likely won’t be available for purchase, it will probably be a lease-only proposition – at least initially.

Officials are still working out the specifics on a global market-by-market basis, but in the U.S., at least, they are aiming for a cost similar to their midsize Altima offering – presumably after all local and federal government incentives for ZEV are factored in. Initial allotments of the Leaf will probably be leased, with the batteries also being a leased proposition, minimizing consumers’ up-front risks for adopting this new style of vehicle and allowing for easier, more cost-effective upgrades as technology improves. As has been done with other automakers’ alternative energy pilot programs in the past, the Leaf will probably be distributed to fleets and very select customers at first – a more widespread commercial push isn’t expected until 2012.

for more info click here

Ford Focus EV

The Ford Focus EV will be based on the next-generation Ford Focus, a capable if not head-turning car. By choosing an existing platform, Ford will save the expense associated with developing a unique design. Ever since the second-generation Prius, with its iconic design, became a hit, automakers have adopted the idea that a hybrid car with an innovative high-tech drivetrain needs to scream out for attention. That’s the direction that Nissan is taking with the Nissan Leaf, due out in limited markets in late 2010. The Chevy Volt plug-in hybrid, the new Honda Insight, and the Lexus HS250h are also original purpose-built designs.

Ford is gambling that the cool factor lies in the technology and price, not in the car’s name or the shape of the sheet metal. Pricing is not yet announced, but trimming the cost obviously will give Ford the ability to aim for affordability and profitability. (Nissan is aiming for $25,000 to $30,000 for its EV; and the Chevy Volt will cost in the range of $40,000.)

Ford developed the full BEV powertrain exhibited in the Tourneo Connect Concept in partnership with Smith Electric Vehicles, a company which specializes in converting commercial cars for electric applications. Being part of a different group, Smith Electric Vehicles has also gained government aid to develop the Tourneo Connect BEV Concept a step further. Ford USA has already made it public that it will be offering an electric Transit Commercial vehicle for sale beginning next year.

The power source utilized in the Tourneo Connect BEV Concept that drives the 50kW permanent magnet motor is a 21kWh lithium ion phosphate battery pack, while the drive torque is channeled to the driveshafts by a one-speed transmission. With this arrangement, the car is expected to reach 100 miles at a speed of 80mph in a single charge, while the battery can be fully charged in six to eight hours from a standard mains outlet. The technology is being developed at the UK research and development center of Ford located in Dunton, Essex, which also develops powertrains for all its European car models. The electric vehicles will be tested in real-world driving conditions in Hillingdon, Middlesex by drivers provided by a project partner called Scottish and Southern Energy

A “mule” vehicle in automotive engineering parlance, is a non-representative vehicle fitted with a new powertrain or suspension components for testing purposes. In this case, Ford had a pair of current Focus sedans equipped with an electric drive train and lithium ion battery pack that was developed in partnership with Magna International. I spent some time chatting with chief engineer Greg Frenette and Magna rep Dick Devogelaere about the car and what we would see for production in two years time. The production model will be based on Ford’s C-segment platform, meaning it will be Focus-sized. However, Ford has already said it will have several vehicles in the U.S. market off this platform, including an MPV like the European C-Max. Frenette would not say which body style would initially get the electric drive.

BMW Megacity

By 2015, BMW will build an all electric city car with two engines available, one will be a very efficient internal combustion engine and the other will be a purely electric model.

The two-powertrain vehicle will be electric powered and it will represent the ideal solution for congested city motoring.

The felows at Autocar UK are following the steps of other publications that hurried to come up with computer generated images of the BMW’s electric car. The first ones to adventure into this CGI game, were the folks at Autobild, who came up with this interesting concept.

BMW’s first all-electric regular series production vehicle, the Megacity EV, has now been set in stone and inserted into the company’s roadmap for a commercial launch in 2012 or 2013. The Bavarian automaker has gone official with word that it plans to use its Leipzig assembly plant to produce the car and further notes that it’ll feature a similar setup to the ActiveE concept (pictured above), which is set for field testing in 2011. Essentially a 1 series that feeds off the electric grid rather than the nearest diesel pump, the ActiveE runs off an array of lithium-ion batteries á la the well liked but recently troubled Tesla Roadster, and will serve as a test mule for refining the underlying technology. Generating up to 170bhp might not sound all that impressive, but it should be more than sufficient for the urban commuters these vehicles will be aimed at. Now we just need Mercedes and Audi to match that release schedule and the electric car should finally have its day in the mainstream sun.

What Is An Electric Car?

An electric car is, quite simply, an automobile that is powered by electricity. These cars usually look just like their gasoline-guzzling counterparts, at least on the outside. This is especially true of gasoline-powered cars that are converted into electric cars. However, there is one thing that may serve to make identifying an electric car easier, even before taking a look under the hood. Sound can help in identification, as electric cars are practically silent.

If you look under the hood of an electric car, you’ll see some major differences from what you could expect to see under the hood of a gasoline-powered car. An electric car has an electric motor and a controller for powering the motor. Rechargeable batteries are used to provide power to the controller. In comparison to traditional cars, electric cars have more wires. Gas-powered cars, on the other hand, have an abundance of hoses, pipes, and fuel lines.

Many people think the electric car is a new invention. This is a misconception, as they’ve been around for many years. In fact, electric cars were among the first automobiles and dominated the market at one point in time. In the early years of the twentieth century, electric cars held records for both speed and distance over land.

The electric car is gaining in popularity once more as people search for ways to cut transportation costs and reduce pollution. However, electric cars tend to be pricey in comparison to traditional gas-powered vehicles. Many predict that costs will eventually decrease in response to higher production volumes and improvements in the manufacturing process.

Another factor is convenience. In one trip to the gas station, you can pump 330 kilowatt-hours of energy into a 10-gallon tank. It would take about 9 days to get the same amount of energy from household electric current. Fortunately, it takes hours and not days to recharge an electric car, because it’s much more efficient. Speaking of convenience, let’s not forget two important points: charging up at home means never going to a gas station—and electric cars require almost none of the maintenance, like oil changes and emissions checks, that internal combustion cars require.

If you’re interested in purchasing an electric car, you might choose to buy one that has been converted from a gas-powered vehicle. There are companies that specialize in converting cars, as well as businesses that sell electric car conversion kits. However, an individual should do research before buying such a kit to ensure that the converted vehicle meets federal crash safety standards.

If you want to find & Compare Top electric cars of the year click here