SmartMeters for your home

Agilewaves constantly monitors electric, gas and water use and provides accurate consumption and carbon footprint information in real-time, from any web enabled device, from anywhere in the world. The system intelligence can send automatic notifications of leaks, excessive energy use or carbon emissions via email or text messaging, and can seamlessly communicate with home control systems.

measuring the ecological footprint of a property in real-time, the technology can monitor each individual circuit, water line, and gas appliance. The flexible system can also track other factors such as temperature/humidity, output from solar PV, performance of solar or geo-thermal water heating, indoor air quality and even living architecture. Current and historical information is automatically stored allowing powerful trend analysis and comparative features to be easily displayed across any time period. The system, custom-designed for larger buildings and higher-end homes, needs to be installed by an electrician and can also be used to dim lights, turn on and off heating and cooling, and adjust smart appliances.

What’s included on the system?

A basic system is turn-key and includes all the associated sensors, hardware and pre-configured software to monitor main water, main gas, and main electric plus 7 additional individual circuits of your choice (equipment, appliances, lights, sub-panels, etc). This is a suggested system starting point only and the system can easily be refined to monitor additional electric, gas or water points of use, as well as indoor air quality, solar, geo-thermal, green living roofs, climate and more

how is it installed?

Sensors are mounted and wired back to an Agilewaves Sensor Integration Panel (ASIP). The electrical sensors mount directly in the circuit breaker panel(s), so do not require invasive installation within the home or building. The gas, water and other sensors are installed at their monitoring point and wired back to the nearest ASIP. In some cases, Agilewaves may be able to gather data from existing “communicating” utility meters or equipment, avoiding the need for additional sensors. Wireless is an option, but only used as a last resort.Agilewaves can communicate with smart meters also.

visit Agilewaves at http://www.agilewaves.com/ to learn about prices and how to order it.

Advertisements

New Bacterium Doubles Hydrogen Gas Production

Hydrogen gas is today used primarily for manufacturing chemicals, but a bright future is predicted for it as a vehicle fuel in combination with fuel cells. In order to produce hydrogen gas in a way that is climate neutral, bacteria are added to forestry or household waste, using a method similar to biogas production. One problem with this production method is that hydrogen exchange is low, i.e. the raw materials generate little hydrogen gas.

Now, for the first time, researchers have studied a newly discovered bacterium that produces twice as much hydrogen gas as the bacteria currently used. The results show how, when and why the bacterium can perform its excellent work and increase the possibilities of competitive biological production of hydrogen gas.

“There are three important explanations for why this bacterium, which is called Caldicellulosiruptor saccharolyticus, produces more hydrogen gas than others. One is that it has adapted to a low-energy environment, which has caused it to develop effective transport systems for carbohydrates and the ability to break down inaccessible parts of plants with the help of enzymes. This in turn means it produces more hydrogen gas. The second explanation is that it can cope with higher growth temperatures than many other bacteria. The higher the temperature, the more hydrogen gas can be formed,” summarises Karin Willquist, doctoral student in Applied Microbiology at Lund University. She will soon be presenting a thesis on the subject.

The third explanation is that the CS bacterium can still produce hydrogen gas even in difficult conditions, for example high partial hydrogen pressure, which is necessary if biological hydrogen gas production is to be financially viable.

On the other hand, the bacterium does not like high concentrations of salt or hydrogen gas. These affect the signalling molecules in the bacterium and, in turn, the metabolism in such a way that it produces less hydrogen gas.

“But it is possible to direct the process so that salt and hydrogen gas concentrations do not become too high,” points out Karin Willquist.

When hydrogen is used as an energy carrier, for example in car engines, water is the only by-product. However, because the hydrogen gas production itself, if it is carried out by a conventional method, consumes large amounts of energy, hydrogen gas is still not a very environmentally friendly energy carrier.

Reforming of methane or electrolysis of water are currently the most common ways to produce hydrogen gas. However, methane gas is not renewable and its use leads to increased carbon dioxide emissions. Electrolysis requires energy, usually acquired from fossil fuels, but also sometimes from wind or solar power. Hydrogen gas can also be generated from wind power, which is an environmentally friendly alternative, even if wind power is controversial for other reasons.

“If hydrogen gas is produced from biomass, there is no addition of carbon dioxide because the carbon dioxide formed in the production is the same that is absorbed from the atmosphere by the plants being used. Bio-hydrogen gas will probably complement biogas in the future,” predicts Karin Willquist.

Today there are cars that run on hydrogen gas, e.g. the Honda FCX, even if they are few in number. The reason for this is that it is too expensive to produce hydrogen gas and there is no functioning hydrogen infrastructure.

“A first step towards a hydrogen gas society could be to mix hydrogen gas with methane gas and use the existing methane gas infrastructure. Buses in Malmö, for example, drive on a mixture of hydrogen gas and methane gas,” says Karin Willquist.

Caldicellulosiruptor saccharolyticus was isolated for the first time in 1987 in a hot spring in New Zealand. It is only recently that researchers have really begun to realise the potential of the bacterium.

For more information click here

What Is An Electric Car?

An electric car is, quite simply, an automobile that is powered by electricity. These cars usually look just like their gasoline-guzzling counterparts, at least on the outside. This is especially true of gasoline-powered cars that are converted into electric cars. However, there is one thing that may serve to make identifying an electric car easier, even before taking a look under the hood. Sound can help in identification, as electric cars are practically silent.

If you look under the hood of an electric car, you’ll see some major differences from what you could expect to see under the hood of a gasoline-powered car. An electric car has an electric motor and a controller for powering the motor. Rechargeable batteries are used to provide power to the controller. In comparison to traditional cars, electric cars have more wires. Gas-powered cars, on the other hand, have an abundance of hoses, pipes, and fuel lines.

Many people think the electric car is a new invention. This is a misconception, as they’ve been around for many years. In fact, electric cars were among the first automobiles and dominated the market at one point in time. In the early years of the twentieth century, electric cars held records for both speed and distance over land.

The electric car is gaining in popularity once more as people search for ways to cut transportation costs and reduce pollution. However, electric cars tend to be pricey in comparison to traditional gas-powered vehicles. Many predict that costs will eventually decrease in response to higher production volumes and improvements in the manufacturing process.

Another factor is convenience. In one trip to the gas station, you can pump 330 kilowatt-hours of energy into a 10-gallon tank. It would take about 9 days to get the same amount of energy from household electric current. Fortunately, it takes hours and not days to recharge an electric car, because it’s much more efficient. Speaking of convenience, let’s not forget two important points: charging up at home means never going to a gas station—and electric cars require almost none of the maintenance, like oil changes and emissions checks, that internal combustion cars require.

If you’re interested in purchasing an electric car, you might choose to buy one that has been converted from a gas-powered vehicle. There are companies that specialize in converting cars, as well as businesses that sell electric car conversion kits. However, an individual should do research before buying such a kit to ensure that the converted vehicle meets federal crash safety standards.

If you want to find & Compare Top electric cars of the year click here

What is the hydrogen fuel?

Ok maybe a lot of people don’t know about the big issue of hydrogen fuel,  well , we need learn about the basics.

What is the hydrogen?

Hydrogen is one of two natural elements that combine to make water. Hydrogen is not an energy source, but an energy carrier because it takes a great deal of energy to extract it from water. It is useful as a compact energy source in fuel cells and batteries. Many companies are working hard to develop technologies that can efficiently exploit the potential of hydrogen energy.

and what’s the hydrogen fuel?

In a flame of pure hydrogen gas, burning in air, the hydrogen (H) chemically combines with oxygen (O) to form water (H2O) plus a lot of heat is produced. It does not produce other chemical by-products. Hence a key feature of hydrogen as a fuel is that it is non-polluting (since water is not a pollutant). Pure hydrogen does not occur naturally; it takes energy to manufacture it. The energy is eventually delivered as heat when the hydrogen is burned. The heat in a hydrogen flame is a radiant emission from the newly formed water molecules. The water molecules are in an excited state on initial formation and then transition to a ground state, and the transition unleashes thermal radiation. This heat can provide motive power for cars, boats and airplanes. Smaller devices can also be powered by hydrogen through the use of hydrogen fuel cell batteries, which can power an electric motor.

At the gas pressure that hydrogen is typically stored at, hydrogen requires four times more storage volume than the volume of gasoline that produces the equivalent energy, but the weight of this hydrogen is nearly three times lighter than the gasoline.With regard to safety from unwanted explosions, hydrogen fuel in automotive vehicles is at least as safe as gasoline.The advantages and disadvantages of hydrogen fuel compared to its competitors are discussed at hydrogen economy.