Gallery

Turning Sunlight Into Liquid Fuel

This gallery contains 2 photos.

For millions of years, green plants have employed photosynthesis to capture energy from sunlight and convert itinto electrochemical energy. A goal of scientists has been to develop an artificial version of photosynthesis that can be used to produce liquid fuels from carbon dioxide and water. … Continue reading

New Platinum Could be Cheaper for More Efficient Fuel Cells

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and the University of Houston are talking about a new form of platinum that might be helpful in making cheaper, more efficient fuel cells. This work has been published in the April 25th issue of Nature Chemistry.

The team is trying to modify the platinum’s reactivity. This step will enable the researchers to cut back the quantity of platinum required by 80 percent. They are also quite positive about minimizing the quantity by another 10 percent. This will reduce the overall cost of the fuel cells. Nilsson says, “I think with a factor of ten, we’ll have a home run.”

Fuel cells work much like batteries. An anode gives out electrons and a cathode collects those electrons thus forming a circuit. So what is the difference between a fuel cell and a battery? Fuel cells use hydrogen and oxygen to complete their energy-producing reactions. The by-product is water and heat.

What metal is chosen for cathode is extremely important. Because some of the metals can’t break the oxygen molecule into atoms. And some bind strongly with oxygen so the important reactions don’t take place. Scientists are trying to attain a balance so that the number of oxygen bonds broken is maximized and the oxygen atoms attach feebly to the catalyst. Platinum helps the scientist in attaining that balance. It breaks the oxygen bonds but does not fasten to the free oxygen atoms too powerfully.